MAT Syllabus Practice Solutions

James Munro*

updated July 2020 (first version October 2019)

Polynomials

- Solve $x^{2}-x-1=0$

The quadratic formula gives $x=\frac{1 \pm \sqrt{5}}{2}$.

- Solve $x^{4}-x^{2}-1=0$

Write $y=x^{2}$ to get a quadratic for y. This is the quadratic above for y, so $x^{2}=\frac{1 \pm \sqrt{5}}{2}$. But $x^{2} \geq 0$ so $x= \pm \sqrt{\frac{1+\sqrt{5}}{2}}$.

- Write $x^{2}+4 x+3$ in the form $(x+a)^{2}+b$
$(x+2)^{2}-1$
- How many real solutions does $x^{2}+b x+1=0$ have? Find the different cases in terms of b.

The discriminant, $b^{2}-4$, is positive if $b>2$ or $b<-2$, negative if $-2<b<2$ and zero if $b= \pm 2$. So there are two real solutions if $b>2$ or if $b<-2$, one real solution if $b= \pm 2$ and no real solutions otherwise.

- Factorise $x^{2}+4 x+3$
$(x+1)(x+3)$
- Let $p(x)=x^{3}-13 x^{2}-65 x-51$. Check that $p(17)=0$. Factorise $p(x)$.
$p(17)=17^{3}-13 \times 17^{2}-65 \times 17-51=17\left(17^{2}-13 \times 17-65-3\right)=17^{2}(17-13-4)=0$. So $(x-17)$ is a factor. Polynomial division gives $p(x)=(x-17)\left(x^{2}+4 x+3\right)$, so $p(x)=$ $(x-17)(x+1)(x+3)$.

Algebra

- Solve the simultaneous equations $x+y=1$ and $x-y=3$.
$x=2$ and $y=-1$.
- For which values of x is it true that $x^{2}+4 x+3>0$?
$x>-1$ or $x<-3$.
- Expand $(2 x+3)^{3}$
$8 x^{3}+36 x^{2}+54 x+27$
- I've got four playing cards; the ace and king of clubs, and the ace and king of hearts. I shuffle the cards together and deal them out left to right. What's the probability that the kings and aces alternate? (they alternate if they are either arranged as $A K A K$ or $K A K A$)
There are 24 possible orders for the cards. Eight of these have alternating kings and aces, so the probability is $1 / 3$.

Differentiation

- Differentiate x^{17} with respect to x.
$17 x^{16}$

[^0]- Differentiate \sqrt{x} with respect to x.
$\frac{1}{2 \sqrt{x}}$
- Differentiate $e^{3 x}$ with respect to x.
$3 e^{3 x}$
- Differentiate $2 e^{-x}-x^{2}$ with respect to x.
$-2 e^{-x}-2 x$
- Find the tangent to the curve $y=e^{x}+1$ at $x=2$.
$y=e^{2}(x-2)+e^{2}+1$
- Find the normal to the parabola $y=x^{2}$ at $x=3$.
$y=-\frac{1}{6}(x-3)+9$
- Find the turning points of the curve $y=x^{4}-2 x^{3}+x^{2}$. Identify whether the turning points are maxima or minima.
Turning points at $x=0$ (minimum), $x=\frac{1}{2}$ (maximum), $x=1$ (minimum).
- For which values of x is $y=x^{4}-2 x^{3}+x^{2}$ increasing? For which values of x is it decreasing? Increasing for $0<x<\frac{1}{2}$ and for $1<x$. Decreasing for $x<0$ and for $\frac{1}{2}<x<1$.
- Two points A and B are on the curve $y=x^{3}+x^{2}+x+1$. A is held fixed at $(1,4)$. The point B is moved along the curve towards A. What happens to the line through A and B ?
The tangent at A is $y=6 x-2$. If the line $A B$ has equation $y=m x+c$ say, then m gets closer and closer to 6 and c gets closer and closer to -2 .

Integration

- Suppose that the derivative of a polynomial $p(x)$ with respect to x is $q(x)$. Find $\int q(x) \mathrm{d} x$. $p(x)+c$ where c is a constant
- Find the area enclosed by the polynomial $x^{2}+4 x+3=0$ and the x-axis. $\frac{4}{3}$
- Find $\int_{-1}^{1} 1+x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6} \mathrm{~d} x$

Note that $\int_{-1}^{1} x^{a} \mathrm{~d} x=0$ for a odd. The integral is $2\left(1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}\right)=\frac{352}{105}$.

Graphs

- Sketch graphs of

$$
y=x^{2}+4 x+3, \quad y=x^{3}+4 x^{2}+3 x, \quad y=2^{x}, \quad y=\log _{2} x \quad \text { on separate axes. }
$$

- Sketch graphs of $y=\sin x, y=\cos x$ and $y=\tan x$ on the same axes.

Logarithms and powers

- Simplify $\log 3+\log 4$ into a single term.
$\log 12$
- Expand $\left(e^{x}+e^{-x}\right)\left(e^{x}+e^{-x}\right)$
$e^{2 x}+2+e^{-2 x}$.
- Solve $2^{x}=3$.
$x=\log _{2} 3$

Transformations

- Let $f(x)=x^{2}+4 x+3$. If you didn't sketch a graph of this before, sketch one now.
- Sketch a graph of $y=f(x+2)$.
- Sketch a graph of $y=3 f(2 x)$.

Geometry

- Add the vectors $\binom{1}{2}$ and $\binom{3}{-2}$.
$\binom{4}{0}$
- Find the equation of the line through $(1,0)$ and $(0,-1)$.
$y=x-1$
- Find the equation of the line through $(1,2)$ with gradient 3 .
$y=3(x-1)+2=3 x-1$
- A circle has centre $(-1,4)$ and radius 3 . Write down an equation for the circle.
$(x+1)^{2}+(y-4)^{2}=9$
- What's the area of this circle?
9π
- Points A and B lie on a circle with centre O and radius 1. The angle $\angle A O B$ is 120°. Find the length of the arc between A and B. Find the area enclosed by that arc and the radii $O A$ and $O B$. It's a third of a circle, so the arc length is $2 \pi / 3$ and the area is $\pi / 3$.

Trigonometry

- Solve $\sin x=\frac{1}{2}$.
$x=30^{\circ}+n \times 360^{\circ}$, or $x=150^{\circ}+n \times 360^{\circ}$, for any whole number n.
- Solve $\tan x=1$.
$x=45^{\circ}+n \times 180^{\circ}$ for any whole number n
- Write $\cos ^{4} x+\cos ^{2} x$ in terms of $\sin x$.
$\left(1-\sin ^{2} x\right)^{2}+\left(1-\sin ^{2} x\right)=2-3 \sin ^{2} x+\sin ^{4} x$.
- Simplify $\cos \left(450^{\circ}-x\right)$
$\sin x$
- A triangle $A B C$ has side lengths $A B=3$ and $B C=2$, and the angle $\angle A B C=120^{\circ}$. Find the remaining side length $A C$, the area of the triangle, and an expression for $\sin \angle B C A$.

Cosine rule; $A C=\sqrt{19}$. The area of the triangle is $3 \sqrt{3} / 2$. Sine rule; $\sin \angle B C A=(3 \sqrt{3} / 2 \sqrt{19})$

Sequences and series

- A sequence is defined by $a_{0}=1, a_{1}=1, a_{2}=1$, and

$$
a_{n}=a_{n-1}+a_{n-2}+a_{n-3} \quad \text { for } n \geq 3 .
$$

Find a_{10}.
$a_{3}=3, a_{4}=5, a_{5}=9, a_{6}=17, a_{7}=31, a_{8}=57, a_{9}=105, a_{10}=193$.

- A sequence has first term 3 and each subsequent term is 5 more than the previous term. Find the sum of the first four terms.
$4 \times 3+\frac{4 \times 3}{2} \times 5=42$
- A sequence has first term 4 and each subsequent term is 6 times more than the previous term. Find the sum of the first four terms.
$4\left(1+6+6^{2}+6^{3}\right)=4 \frac{6^{4}-1}{6-1}=4 \frac{1295}{5}=4 \times 259=1036$.
- When does the sum $1+x^{3}+x^{6}+x^{9}+x^{12}+\ldots$ converge? Simplify it in the case that it converges. Converges when $-1<x<1$. In that case, it converges to $1 /\left(1-x^{3}\right)$.

[^0]: *Admissions Coordinator for Maths at Oxford. Comments or corrections should be sent to james.munro@maths.ox. ac.uk

